|
@@ -0,0 +1,461 @@
|
|
1
|
+/*
|
|
2
|
+ * encantar.js
|
|
3
|
+ * GPU-accelerated Augmented Reality for the web
|
|
4
|
+ * Copyright (C) 2022-2024 Alexandre Martins <alemartf(at)gmail.com>
|
|
5
|
+ *
|
|
6
|
+ * This program is free software: you can redistribute it and/or modify
|
|
7
|
+ * it under the terms of the GNU Lesser General Public License as published
|
|
8
|
+ * by the Free Software Foundation, either version 3 of the License, or
|
|
9
|
+ * (at your option) any later version.
|
|
10
|
+ *
|
|
11
|
+ * This program is distributed in the hope that it will be useful,
|
|
12
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14
|
+ * GNU Lesser General Public License for more details.
|
|
15
|
+ *
|
|
16
|
+ * You should have received a copy of the GNU Lesser General Public License
|
|
17
|
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
18
|
+ *
|
|
19
|
+ * image-tracker-utils.ts
|
|
20
|
+ * Image Tracker: Utilities
|
|
21
|
+ */
|
|
22
|
+
|
|
23
|
+import Speedy from 'speedy-vision';
|
|
24
|
+import { SpeedySize } from 'speedy-vision/types/core/speedy-size';
|
|
25
|
+import { SpeedyPromise } from 'speedy-vision/types/core/speedy-promise';
|
|
26
|
+import { SpeedyMedia } from 'speedy-vision/types/core/speedy-media';
|
|
27
|
+import { SpeedyMatrix } from 'speedy-vision/types/core/speedy-matrix';
|
|
28
|
+import { SpeedyPoint2 } from 'speedy-vision/types/core/speedy-point';
|
|
29
|
+import { SpeedyVector2 } from 'speedy-vision/types/core/speedy-vector';
|
|
30
|
+import { SpeedyKeypoint } from 'speedy-vision/types/core/speedy-keypoint';
|
|
31
|
+import { ImageTracker } from './image-tracker';
|
|
32
|
+import { ReferenceImage } from './reference-image';
|
|
33
|
+import { Utils } from '../../utils/utils';
|
|
34
|
+import { IllegalOperationError, IllegalArgumentError, NumericalError } from '../../utils/errors';
|
|
35
|
+import { NIS_SIZE, TRACK_GRID_GRANULARITY } from './settings';
|
|
36
|
+
|
|
37
|
+/*
|
|
38
|
+
|
|
39
|
+Definitions:
|
|
40
|
+------------
|
|
41
|
+
|
|
42
|
+1. Raster space:
|
|
43
|
+ an image space whose top-left coordinate is (0,0) and whose bottom-right
|
|
44
|
+ coordinate is (w-1,h-1), where (w,h) is its size. The y-axis points down.
|
|
45
|
+
|
|
46
|
+2. AR screen size:
|
|
47
|
+ size in pixels used for image processing operations. It's determined by the
|
|
48
|
+ resolution of the tracker and by the aspect ratio of the input media.
|
|
49
|
+
|
|
50
|
+3. AR screen space (screen):
|
|
51
|
+ a raster space whose size is the AR screen size.
|
|
52
|
+
|
|
53
|
+4. Normalized Image Space (NIS):
|
|
54
|
+ a raster space whose size is N x N, where N = NIS_SIZE.
|
|
55
|
+
|
|
56
|
+5. Normalized Device Coordinates (NDC):
|
|
57
|
+ the normalized 2D space [-1,1]x[-1,1]. The origin is at the center and the
|
|
58
|
+ y-axis points up.
|
|
59
|
+
|
|
60
|
+*/
|
|
61
|
+
|
|
62
|
+/** An ordered pair [src, dest] of keypoints */
|
|
63
|
+export type ImageTrackerKeypointPair = [ Readonly<SpeedyKeypoint>, Readonly<SpeedyKeypoint> ];
|
|
64
|
+
|
|
65
|
+/**
|
|
66
|
+ * Utilities for the Image Tracker
|
|
67
|
+ */
|
|
68
|
+export class ImageTrackerUtils
|
|
69
|
+{
|
|
70
|
+ /**
|
|
71
|
+ * Find a transformation that converts a raster space to NIS
|
|
72
|
+ * @param size size of the raster space
|
|
73
|
+ * @returns a 3x3 matrix
|
|
74
|
+ */
|
|
75
|
+ static rasterToNIS(size: SpeedySize): SpeedyMatrix
|
|
76
|
+ {
|
|
77
|
+ const sx = NIS_SIZE / size.width;
|
|
78
|
+ const sy = NIS_SIZE / size.height;
|
|
79
|
+
|
|
80
|
+ return Speedy.Matrix(3, 3, [
|
|
81
|
+ sx, 0, 0,
|
|
82
|
+ 0, sy, 0,
|
|
83
|
+ 0, 0, 1
|
|
84
|
+ ]);
|
|
85
|
+ }
|
|
86
|
+
|
|
87
|
+ /**
|
|
88
|
+ * Find a transformation that converts a raster space to NDC
|
|
89
|
+ * @param size size of the raster space
|
|
90
|
+ * @returns a 3x3 matrix
|
|
91
|
+ */
|
|
92
|
+ static rasterToNDC(size: SpeedySize): SpeedyMatrix
|
|
93
|
+ {
|
|
94
|
+ const w = size.width, h = size.height;
|
|
95
|
+
|
|
96
|
+ return Speedy.Matrix(3, 3, [
|
|
97
|
+ 2/w, 0, 0,
|
|
98
|
+ 0, -2/h, 0,
|
|
99
|
+ -1, 1, 1
|
|
100
|
+ ]);
|
|
101
|
+ }
|
|
102
|
+
|
|
103
|
+ /**
|
|
104
|
+ * Find a transformation that converts NDC to a raster space
|
|
105
|
+ * @param size size of the raster space
|
|
106
|
+ * @returns a 3x3 matrix
|
|
107
|
+ */
|
|
108
|
+ static NDCToRaster(size: SpeedySize): SpeedyMatrix
|
|
109
|
+ {
|
|
110
|
+ const w = size.width, h = size.height;
|
|
111
|
+
|
|
112
|
+ return Speedy.Matrix(3, 3, [
|
|
113
|
+ w/2, 0, 0,
|
|
114
|
+ 0, -h/2, 0,
|
|
115
|
+ w/2, h/2, 1
|
|
116
|
+ ]);
|
|
117
|
+ }
|
|
118
|
+
|
|
119
|
+ /**
|
|
120
|
+ * Find a transformation that scales points in NDC
|
|
121
|
+ * @param sx horizontal scale factor
|
|
122
|
+ * @param sy vertical scale factor
|
|
123
|
+ * @returns a 3x3 matrix
|
|
124
|
+ */
|
|
125
|
+ static scaleNDC(sx: number, sy: number = sx): SpeedyMatrix
|
|
126
|
+ {
|
|
127
|
+ // In NDC, the origin is at the center of the space!
|
|
128
|
+ return Speedy.Matrix(3, 3, [
|
|
129
|
+ sx, 0, 0,
|
|
130
|
+ 0, sy, 0,
|
|
131
|
+ 0, 0, 1
|
|
132
|
+ ]);
|
|
133
|
+ }
|
|
134
|
+
|
|
135
|
+ /**
|
|
136
|
+ * Find a scale transformation in NDC such that the output has a desired aspect ratio
|
|
137
|
+ * @param aspectRatio desired aspect ratio
|
|
138
|
+ * @param scale optional scale factor in both axes
|
|
139
|
+ * @returns a 3x3 matrix
|
|
140
|
+ */
|
|
141
|
+ static bestFitScaleNDC(aspectRatio: number, scale: number = 1): SpeedyMatrix
|
|
142
|
+ {
|
|
143
|
+ if(aspectRatio >= 1)
|
|
144
|
+ return this.scaleNDC(scale, scale / aspectRatio); // s/(s/a) = a, sx >= sy
|
|
145
|
+ else
|
|
146
|
+ return this.scaleNDC(scale * aspectRatio, scale); // (s*a)/s = a, sx < sy
|
|
147
|
+ }
|
|
148
|
+
|
|
149
|
+ /**
|
|
150
|
+ * Find the inverse matrix of bestFitScaleNDC()
|
|
151
|
+ * @param aspectRatio as given to bestFitScaleNDC()
|
|
152
|
+ * @param scale optional, as given to bestFitScaleNDC()
|
|
153
|
+ * @returns a 3x3 matrix
|
|
154
|
+ */
|
|
155
|
+ static inverseBestFitScaleNDC(aspectRatio: number, scale: number = 1): SpeedyMatrix
|
|
156
|
+ {
|
|
157
|
+ if(aspectRatio >= 1)
|
|
158
|
+ return this.scaleNDC(1 / scale, aspectRatio / scale);
|
|
159
|
+ else
|
|
160
|
+ return this.scaleNDC(1 / (scale * aspectRatio), 1 / scale);
|
|
161
|
+ }
|
|
162
|
+
|
|
163
|
+ /**
|
|
164
|
+ * Find the best-fit aspect ratio for the rectification of the reference image in NDC
|
|
165
|
+ * @param imageTracker
|
|
166
|
+ * @param referenceImage
|
|
167
|
+ * @returns a best-fit aspect ratio
|
|
168
|
+ */
|
|
169
|
+ static bestFitAspectRatioNDC(imageTracker: ImageTracker, referenceImage: ReferenceImage): number
|
|
170
|
+ {
|
|
171
|
+ const screenSize = imageTracker.screenSize;
|
|
172
|
+ const screenAspectRatio = screenSize.width / screenSize.height;
|
|
173
|
+ const referenceImageMedia = imageTracker.database._findMedia(referenceImage.name);
|
|
174
|
+ const referenceImageAspectRatio = referenceImageMedia.size.width / referenceImageMedia.size.height;
|
|
175
|
+
|
|
176
|
+ /*
|
|
177
|
+
|
|
178
|
+ The best-fit aspectRatio (a) is constructed as follows:
|
|
179
|
+
|
|
180
|
+ 1) a fully stretched(*) and distorted reference image in NDC:
|
|
181
|
+ a = 1
|
|
182
|
+
|
|
183
|
+ 2) a square in NDC:
|
|
184
|
+ a = 1 / screenAspectRatio
|
|
185
|
+
|
|
186
|
+ 3) an image with the aspect ratio of the reference image in NDC:
|
|
187
|
+ a = referenceImageAspectRatio * (1 / screenAspectRatio)
|
|
188
|
+
|
|
189
|
+ (*) AR screen space
|
|
190
|
+
|
|
191
|
+ By transforming the reference image twice, first by converting it to AR
|
|
192
|
+ screen space, and then by rectifying it, we lose a little bit of quality.
|
|
193
|
+ Nothing to be too concerned about, though?
|
|
194
|
+
|
|
195
|
+ */
|
|
196
|
+
|
|
197
|
+ return referenceImageAspectRatio / screenAspectRatio;
|
|
198
|
+ }
|
|
199
|
+
|
|
200
|
+ /**
|
|
201
|
+ * Given n > 0 pairs (src_i, dest_i) of keypoints in NIS,
|
|
202
|
+ * convert them to NDC and output a 2 x 2n matrix of the form:
|
|
203
|
+ * [ src_0.x src_1.x ... | dest_0.x dest_1.x ... ]
|
|
204
|
+ * [ src_0.y src_1.y ... | dest_0.y dest_1.y ... ]
|
|
205
|
+ * @param pairs pairs of keypoints in NIS
|
|
206
|
+ * @returns 2 x 2n matrix with two 2 x n blocks: [ src | dest ]
|
|
207
|
+ * @throws
|
|
208
|
+ */
|
|
209
|
+ static compilePairsOfKeypointsNDC(pairs: ImageTrackerKeypointPair[]): SpeedyMatrix
|
|
210
|
+ {
|
|
211
|
+ const n = pairs.length;
|
|
212
|
+
|
|
213
|
+ if(n == 0)
|
|
214
|
+ throw new IllegalArgumentError();
|
|
215
|
+
|
|
216
|
+ const scale = 2 / NIS_SIZE;
|
|
217
|
+ const data = new Array<number>(2 * 2*n);
|
|
218
|
+
|
|
219
|
+ for(let i = 0, j = 0, k = 2*n; i < n; i++, j += 2, k += 2) {
|
|
220
|
+ const src = pairs[i][0];
|
|
221
|
+ const dest = pairs[i][1];
|
|
222
|
+
|
|
223
|
+ data[j] = src.x * scale - 1; // convert from NIS to NDC
|
|
224
|
+ data[j+1] = 1 - src.y * scale; // flip y-axis
|
|
225
|
+
|
|
226
|
+ data[k] = dest.x * scale - 1;
|
|
227
|
+ data[k+1] = 1 - dest.y * scale;
|
|
228
|
+ }
|
|
229
|
+
|
|
230
|
+ return Speedy.Matrix(2, 2*n, data);
|
|
231
|
+ }
|
|
232
|
+
|
|
233
|
+ /**
|
|
234
|
+ * Given n > 0 pairs of keypoints in NDC as a 2 x 2n [ src | dest ] matrix,
|
|
235
|
+ * find a perspective warp (homography) from src to dest in NDC
|
|
236
|
+ * @param points compiled pairs of keypoints in NDC
|
|
237
|
+ * @param options to be passed to speedy-vision
|
|
238
|
+ * @returns a pair [ 3x3 transformation matrix, quality score ]
|
|
239
|
+ */
|
|
240
|
+ static findPerspectiveWarpNDC(points: SpeedyMatrix, options: object): SpeedyPromise<[SpeedyMatrix,number]>
|
|
241
|
+ {
|
|
242
|
+ // too few data points?
|
|
243
|
+ const n = points.columns / 2;
|
|
244
|
+ if(n < 4) {
|
|
245
|
+ return Speedy.Promise.reject(
|
|
246
|
+ new IllegalArgumentError(`Too few data points to compute a perspective warp`)
|
|
247
|
+ );
|
|
248
|
+ }
|
|
249
|
+
|
|
250
|
+ // compute a homography
|
|
251
|
+ const src = points.block(0, 1, 0, n-1);
|
|
252
|
+ const dest = points.block(0, 1, n, 2*n-1);
|
|
253
|
+ const mask = Speedy.Matrix.Zeros(1, n);
|
|
254
|
+
|
|
255
|
+ return Speedy.Matrix.findHomography(
|
|
256
|
+ Speedy.Matrix.Zeros(3),
|
|
257
|
+ src,
|
|
258
|
+ dest,
|
|
259
|
+ Object.assign({ mask }, options)
|
|
260
|
+ ).then(homography => {
|
|
261
|
+
|
|
262
|
+ // check if this is a valid warp
|
|
263
|
+ const a00 = homography.at(0,0);
|
|
264
|
+ if(Number.isNaN(a00))
|
|
265
|
+ throw new NumericalError(`Can't compute a perspective warp: bad keypoints`);
|
|
266
|
+
|
|
267
|
+ // count the number of inliers
|
|
268
|
+ const inliers = mask.read();
|
|
269
|
+ let inlierCount = 0;
|
|
270
|
+ for(let i = inliers.length - 1; i >= 0; i--)
|
|
271
|
+ inlierCount += inliers[i];
|
|
272
|
+ const score = inlierCount / inliers.length;
|
|
273
|
+
|
|
274
|
+ // done!
|
|
275
|
+ return [ homography, score ];
|
|
276
|
+
|
|
277
|
+ });
|
|
278
|
+ }
|
|
279
|
+
|
|
280
|
+ /**
|
|
281
|
+ * Given n > 0 pairs of keypoints in NDC as a 2 x 2n [ src | dest ] matrix,
|
|
282
|
+ * find an affine warp from src to dest in NDC. The affine warp is given as
|
|
283
|
+ * a 3x3 matrix whose last row is [0 0 1]
|
|
284
|
+ * @param points compiled pairs of keypoints in NDC
|
|
285
|
+ * @param options to be passed to speedy-vision
|
|
286
|
+ * @returns a pair [ 3x3 transformation matrix, quality score ]
|
|
287
|
+ */
|
|
288
|
+ static findAffineWarpNDC(points: SpeedyMatrix, options: object): SpeedyPromise<[SpeedyMatrix,number]>
|
|
289
|
+ {
|
|
290
|
+ // too few data points?
|
|
291
|
+ const n = points.columns / 2;
|
|
292
|
+ if(n < 3) {
|
|
293
|
+ return Speedy.Promise.reject(
|
|
294
|
+ new IllegalArgumentError(`Too few data points to compute an affine warp`)
|
|
295
|
+ );
|
|
296
|
+ }
|
|
297
|
+
|
|
298
|
+ // compute an affine transformation
|
|
299
|
+ const model = Speedy.Matrix.Eye(3);
|
|
300
|
+ const src = points.block(0, 1, 0, n-1);
|
|
301
|
+ const dest = points.block(0, 1, n, 2*n-1);
|
|
302
|
+ const mask = Speedy.Matrix.Zeros(1, n);
|
|
303
|
+
|
|
304
|
+ return Speedy.Matrix.findAffineTransform(
|
|
305
|
+ model.block(0, 1, 0, 2), // 2x3 submatrix
|
|
306
|
+ src,
|
|
307
|
+ dest,
|
|
308
|
+ Object.assign({ mask }, options)
|
|
309
|
+ ).then(_ => {
|
|
310
|
+
|
|
311
|
+ // check if this is a valid warp
|
|
312
|
+ const a00 = model.at(0,0);
|
|
313
|
+ if(Number.isNaN(a00))
|
|
314
|
+ throw new NumericalError(`Can't compute an affine warp: bad keypoints`);
|
|
315
|
+
|
|
316
|
+ // count the number of inliers
|
|
317
|
+ const inliers = mask.read();
|
|
318
|
+ let inlierCount = 0;
|
|
319
|
+ for(let i = inliers.length - 1; i >= 0; i--)
|
|
320
|
+ inlierCount += inliers[i];
|
|
321
|
+ const score = inlierCount / inliers.length;
|
|
322
|
+
|
|
323
|
+ // done!
|
|
324
|
+ return [ model, score ];
|
|
325
|
+
|
|
326
|
+ });
|
|
327
|
+ }
|
|
328
|
+
|
|
329
|
+ /**
|
|
330
|
+ * Find a polyline in Normalized Device Coordinates (NDC)
|
|
331
|
+ * @param homography maps the corners of NDC to a quadrilateral in NDC
|
|
332
|
+ * @returns 4 points in NDC
|
|
333
|
+ */
|
|
334
|
+ static findPolylineNDC(homography: SpeedyMatrix): SpeedyPoint2[]
|
|
335
|
+ {
|
|
336
|
+ const h = homography.read();
|
|
337
|
+ const uv = [ -1, +1, -1, -1, +1, -1, +1, +1 ]; // the corners of a reference image in NDC
|
|
338
|
+ const polyline = new Array<SpeedyPoint2>(4);
|
|
339
|
+
|
|
340
|
+ for(let i = 0, j = 0; i < 4; i++, j += 2) {
|
|
341
|
+ const u = uv[j], v = uv[j+1];
|
|
342
|
+
|
|
343
|
+ const x = h[0]*u + h[3]*v + h[6];
|
|
344
|
+ const y = h[1]*u + h[4]*v + h[7];
|
|
345
|
+ const w = h[2]*u + h[5]*v + h[8];
|
|
346
|
+
|
|
347
|
+ polyline[i] = Speedy.Point2(x/w, y/w);
|
|
348
|
+ }
|
|
349
|
+
|
|
350
|
+ return polyline;
|
|
351
|
+ }
|
|
352
|
+
|
|
353
|
+ /**
|
|
354
|
+ * Find a better spatial distribution of the input matches
|
|
355
|
+ * @param pairs in the [src, dest] format
|
|
356
|
+ * @returns refined pairs of quality matches
|
|
357
|
+ */
|
|
358
|
+ static refineMatchingPairs(pairs: ImageTrackerKeypointPair[]): ImageTrackerKeypointPair[]
|
|
359
|
+ {
|
|
360
|
+ // collect all keypoints obtained in this frame
|
|
361
|
+ const m = pairs.length;
|
|
362
|
+ const destKeypoints = new Array<SpeedyKeypoint>(m);
|
|
363
|
+
|
|
364
|
+ for(let j = 0; j < m; j++)
|
|
365
|
+ destKeypoints[j] = pairs[j][1];
|
|
366
|
+
|
|
367
|
+ // find a better spatial distribution of the keypoints
|
|
368
|
+ const indices = this._distributeKeypoints(destKeypoints);
|
|
369
|
+
|
|
370
|
+ // assemble output
|
|
371
|
+ const n = indices.length; // number of refined matches
|
|
372
|
+ const result = new Array<ImageTrackerKeypointPair>(n);
|
|
373
|
+
|
|
374
|
+ for(let i = 0; i < n; i++)
|
|
375
|
+ result[i] = pairs[indices[i]];
|
|
376
|
+
|
|
377
|
+ // done!
|
|
378
|
+ return result;
|
|
379
|
+ }
|
|
380
|
+
|
|
381
|
+ /**
|
|
382
|
+ * Spatially distribute keypoints over a grid
|
|
383
|
+ * @param keypoints keypoints to be distributed
|
|
384
|
+ * @returns a list of indices of keypoints[]
|
|
385
|
+ */
|
|
386
|
+ private static _distributeKeypoints(keypoints: SpeedyKeypoint[]): number[]
|
|
387
|
+ {
|
|
388
|
+ // create a grid
|
|
389
|
+ const gridCells = TRACK_GRID_GRANULARITY; // number of grid elements in each axis
|
|
390
|
+ const numberOfCells = gridCells * gridCells;
|
|
391
|
+ const n = keypoints.length;
|
|
392
|
+
|
|
393
|
+ // get the coordinates of the keypoints
|
|
394
|
+ const points: number[] = new Array(2 * n);
|
|
395
|
+ for(let i = 0, j = 0; i < n; i++, j += 2) {
|
|
396
|
+ points[j] = keypoints[i].x;
|
|
397
|
+ points[j+1] = keypoints[i].y;
|
|
398
|
+ }
|
|
399
|
+
|
|
400
|
+ // normalize the coordinates to [0,1) x [0,1)
|
|
401
|
+ this._normalizePoints(points);
|
|
402
|
+
|
|
403
|
+ // distribute the keypoints over the grid
|
|
404
|
+ const grid = new Array<number>(numberOfCells).fill(-1);
|
|
405
|
+ for(let i = 0, j = 0; i < n; i++, j += 2) {
|
|
406
|
+ // find the grid location of the i-th point
|
|
407
|
+ const xg = Math.floor(points[j] * gridCells); // 0 <= xg,yg < gridCells
|
|
408
|
+ const yg = Math.floor(points[j+1] * gridCells);
|
|
409
|
+
|
|
410
|
+ // store the index of the i-th point in the grid
|
|
411
|
+ const k = yg * gridCells + xg;
|
|
412
|
+ if(grid[k] < 0)
|
|
413
|
+ grid[k] = i;
|
|
414
|
+ }
|
|
415
|
+
|
|
416
|
+ // retrieve points of the grid
|
|
417
|
+ let m = 0;
|
|
418
|
+ const indices = new Array<number>(numberOfCells);
|
|
419
|
+ for(let g = 0; g < numberOfCells; g++) {
|
|
420
|
+ if(grid[g] >= 0)
|
|
421
|
+ indices[m++] = grid[g];
|
|
422
|
+ }
|
|
423
|
+ indices.length = m;
|
|
424
|
+
|
|
425
|
+ // done!
|
|
426
|
+ return indices;
|
|
427
|
+ }
|
|
428
|
+
|
|
429
|
+ /**
|
|
430
|
+ * Normalize points to [0,1)^2
|
|
431
|
+ * @param points 2 x n matrix of points in column-major format
|
|
432
|
+ * @returns points
|
|
433
|
+ */
|
|
434
|
+ private static _normalizePoints(points: number[]): number[]
|
|
435
|
+ {
|
|
436
|
+ Utils.assert(points.length % 2 == 0);
|
|
437
|
+
|
|
438
|
+ const n = points.length / 2;
|
|
439
|
+ if(n == 0)
|
|
440
|
+ return points;
|
|
441
|
+
|
|
442
|
+ let xmin = Number.POSITIVE_INFINITY, xmax = Number.NEGATIVE_INFINITY;
|
|
443
|
+ let ymin = Number.POSITIVE_INFINITY, ymax = Number.NEGATIVE_INFINITY;
|
|
444
|
+ for(let i = 0, j = 0; i < n; i++, j += 2) {
|
|
445
|
+ const x = points[j], y = points[j+1];
|
|
446
|
+ xmin = x < xmin ? x : xmin;
|
|
447
|
+ ymin = y < ymin ? y : ymin;
|
|
448
|
+ xmax = x > xmax ? x : xmax;
|
|
449
|
+ ymax = y > ymax ? y : ymax;
|
|
450
|
+ }
|
|
451
|
+
|
|
452
|
+ const xlen = xmax - xmin + 1; // +1 is a correction factor, so that 0 <= x,y < 1
|
|
453
|
+ const ylen = ymax - ymin + 1;
|
|
454
|
+ for(let i = 0, j = 0; i < n; i++, j += 2) {
|
|
455
|
+ points[j] = (points[j] - xmin) / xlen;
|
|
456
|
+ points[j+1] = (points[j+1] - ymin) / ylen;
|
|
457
|
+ }
|
|
458
|
+
|
|
459
|
+ return points;
|
|
460
|
+ }
|
|
461
|
+}
|