|
@@ -58,6 +58,15 @@ export class Transform
|
58
|
58
|
/** whether or not we have extracted the position from the matrix */
|
59
|
59
|
private _isPositionComputed: boolean;
|
60
|
60
|
|
|
61
|
+ /** unit right vector of the local space, computed lazily */
|
|
62
|
+ private _right: Vector3;
|
|
63
|
+
|
|
64
|
+ /** unit up vector of the local space, computed lazily */
|
|
65
|
+ private _up: Vector3;
|
|
66
|
+
|
|
67
|
+ /** unit forward vector of the local space, computed lazily */
|
|
68
|
+ private _forward: Vector3;
|
|
69
|
+
|
61
|
70
|
|
62
|
71
|
|
63
|
72
|
/**
|
|
@@ -75,12 +84,19 @@ export class Transform
|
75
|
84
|
this._position = Vector3.Zero();
|
76
|
85
|
this._orientation = Quaternion.Identity();
|
77
|
86
|
this._scale = new Vector3(1, 1, 1);
|
|
87
|
+
|
78
|
88
|
this._isDecomposed = false;
|
79
|
89
|
this._isPositionComputed = false;
|
|
90
|
+
|
|
91
|
+ this._right = Vector3.ZERO;
|
|
92
|
+ this._up = Vector3.ZERO;
|
|
93
|
+ this._forward = Vector3.ZERO;
|
80
|
94
|
}
|
81
|
95
|
|
82
|
96
|
/**
|
83
|
97
|
* The 4x4 transformation matrix
|
|
98
|
+ * This matrix is not meant to be changed. Changing it will not update the
|
|
99
|
+ * previously computed components of the transform!
|
84
|
100
|
*/
|
85
|
101
|
get matrix(): SpeedyMatrix
|
86
|
102
|
{
|
|
@@ -132,6 +148,55 @@ export class Transform
|
132
|
148
|
}
|
133
|
149
|
|
134
|
150
|
/**
|
|
151
|
+ * Unit right vector of the local space
|
|
152
|
+ */
|
|
153
|
+ get right(): Vector3
|
|
154
|
+ {
|
|
155
|
+ if(this._right === Vector3.ZERO) {
|
|
156
|
+ const rotationMatrix = this.orientation._toRotationMatrix(); // R
|
|
157
|
+ const u = rotationMatrix.block(0, 2, 0, 0).read(); // R * [1 0 0]'
|
|
158
|
+ this._right = new Vector3(u[0], u[1], u[2]);
|
|
159
|
+ }
|
|
160
|
+
|
|
161
|
+ return this._right;
|
|
162
|
+ }
|
|
163
|
+
|
|
164
|
+ /**
|
|
165
|
+ * Unit up vector of the local space
|
|
166
|
+ */
|
|
167
|
+ get up(): Vector3
|
|
168
|
+ {
|
|
169
|
+ if(this._up === Vector3.ZERO) {
|
|
170
|
+ const rotationMatrix = this.orientation._toRotationMatrix(); // R
|
|
171
|
+ const v = rotationMatrix.block(0, 2, 1, 1).read(); // R * [0 1 0]'
|
|
172
|
+ this._up = new Vector3(v[0], v[1], v[2]);
|
|
173
|
+ }
|
|
174
|
+
|
|
175
|
+ return this._up;
|
|
176
|
+ }
|
|
177
|
+
|
|
178
|
+ /**
|
|
179
|
+ * Unit forward vector of the local space
|
|
180
|
+ */
|
|
181
|
+ get forward(): Vector3
|
|
182
|
+ {
|
|
183
|
+ if(this._forward === Vector3.ZERO) {
|
|
184
|
+ const rotationMatrix = this.orientation._toRotationMatrix(); // R
|
|
185
|
+ const w = rotationMatrix.block(0, 2, 2, 2).read(); // R * [0 0 1]'
|
|
186
|
+ this._forward = new Vector3(-w[0], -w[1], -w[2]); // (*)
|
|
187
|
+
|
|
188
|
+ /*
|
|
189
|
+
|
|
190
|
+ (*) in a right-handed system, the unit forward vector is (0,0,-1)
|
|
191
|
+ in a left-handed system, it is (0,0,1)
|
|
192
|
+
|
|
193
|
+ */
|
|
194
|
+ }
|
|
195
|
+
|
|
196
|
+ return this._forward;
|
|
197
|
+ }
|
|
198
|
+
|
|
199
|
+ /**
|
135
|
200
|
* Decompose this transform
|
136
|
201
|
*/
|
137
|
202
|
private _decompose(): void
|